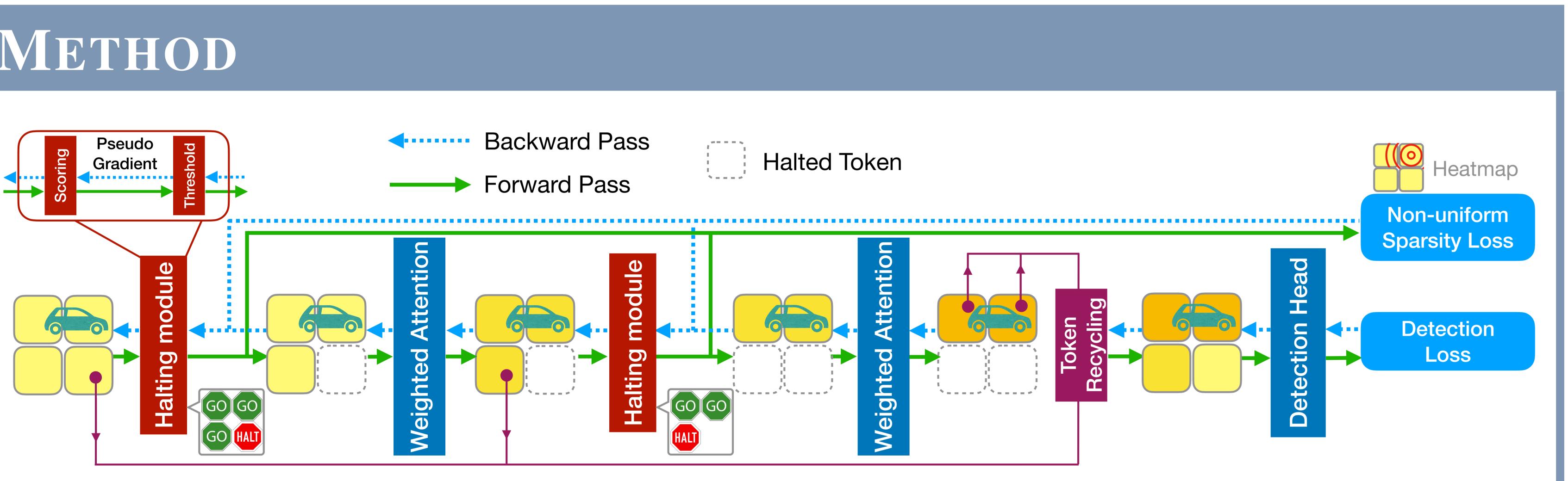


- Transformers have achieved state-of-the-art results in several computer vision tasks.
- by dynamically halting tokens based on their contribution to the detection task.

METHOD



- Our method is built upon SST, which is a transformer-based LiDAR object detector.

- During training, we define a pseudo-gradient to back-propagate through the halting module.
- To improve learning of the halting module, we leverage a weighted attention mechanism, which weights the attention given to each token based on their score.
- The whole network is trained end-to-end using a detection loss and a sparsity loss.

EFFICIENT TRANSFORMER-BASED 3D OBJECT DETECTION WITH DYNAMIC TOKEN HALTING Mao Ye^{1,2}, Gregory P. Meyer², Yuning Chai², and Qiang Liu¹ ¹The University of Texas at Austin ²Cruise LLC

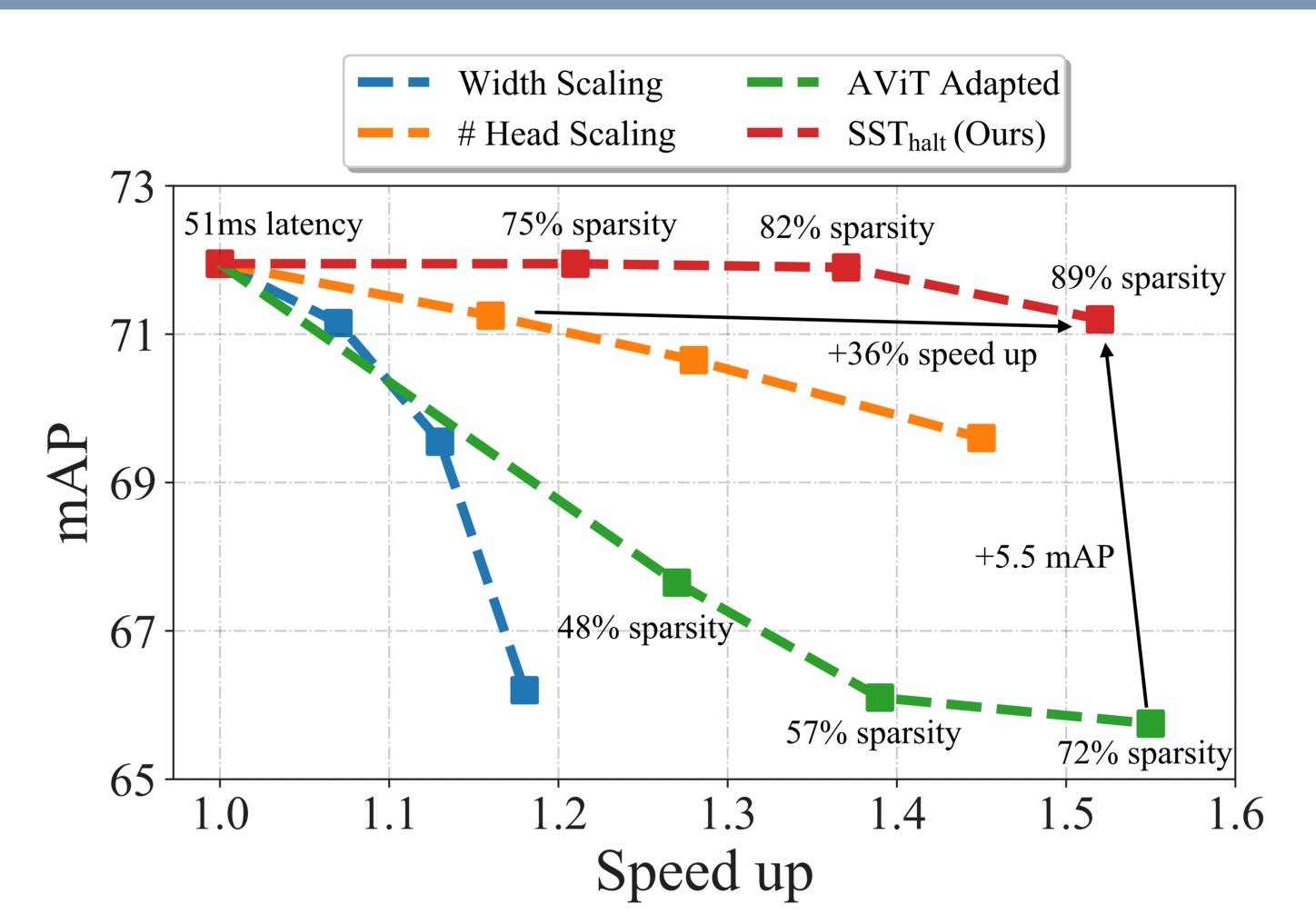
• However, transformers suffer from high-latency due the quadratic complexity of attention. • In this work, we propose a method for accelerating transformer-based 3D object detectors

• As a result, our method significantly improves the Pareto frontier of latency versus accuracy.

• First, the input LiDAR point cloud is voxelized, and each voxel is treated as a token. • Before each layer, a halting module scores the tokens and halts those with a low score.

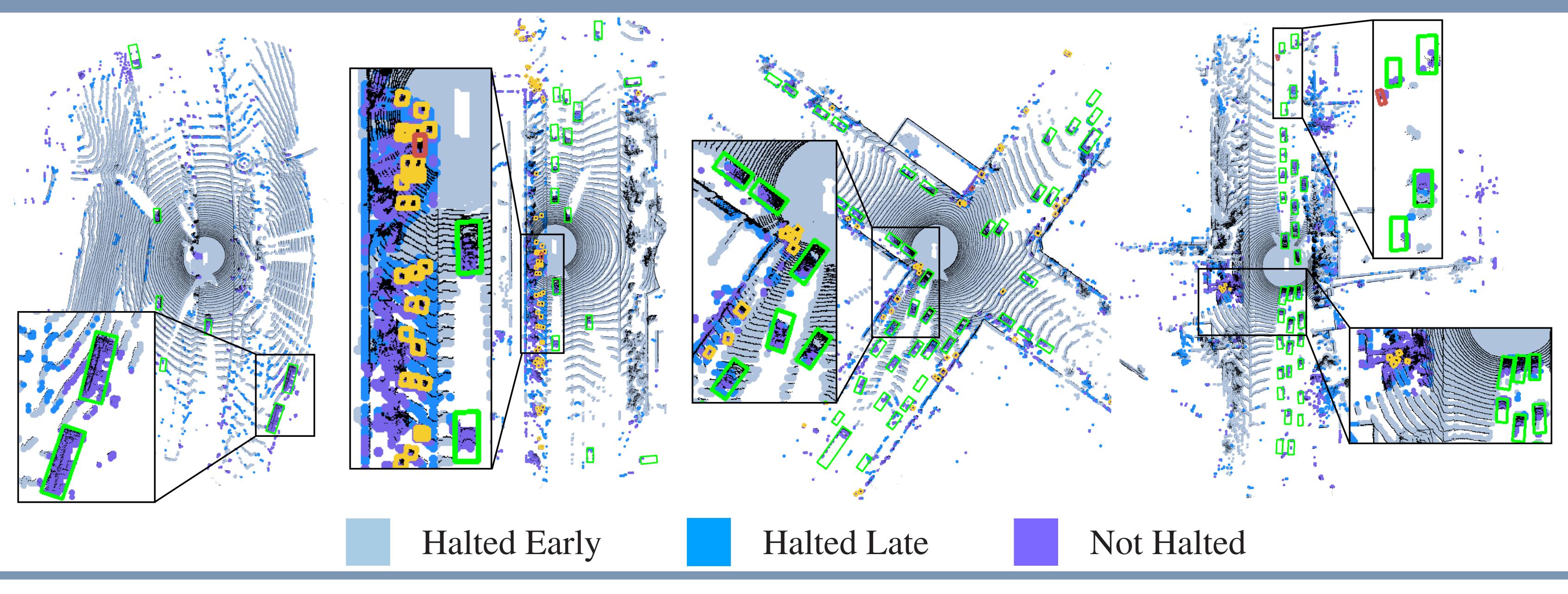
• After the last attention layer, halted tokens are recycled and forwarded to the detection head.

EFFICIENCY VS. ACCURACY DETECTION PERFORMANCE



When compared to other model scaling approaches, our method provides the best efficiency and accuracy trade-off.

VISUALIZATIONS



CIUISE

WOD Validation Set	
--------------------	--

Method	Vehicle APH L2	Pedestrian APH L2	Cyclist APH L2
PointPillar	63.1	50.3	59.9
PV-RCNN	68.4	57.6	64.0
RangeDet	63.6	63.9	62.1
Lidăr R-CNN	67.9	51.7	64.4
CenterPoint	67.5	57.9	
RSN	65.5	63.7	
SST	65.1	61.7	
SWFormer	68.8	64.9	
SST ⁺⁺ _{halt} (Ours)	69.0	66.5	66.0

We leverage the latency savings provided by our method to improve the performance of SST while maintaining its runtime.