
Real-time 3D Face Verification with a Consumer Depth Camera

Gregory P. Meyer Minh N. Do

University of Illinois at Urbana-Champaign

Abstract—We present a system for accurate real-time 3D
face verification using a low-quality consumer depth camera.
To verify the identity of a subject, we built a high-quality
reference model offline by fitting a 3D morphable model to a
sequence of low-quality depth images. At runtime, we compare
the similarity between the reference model and a single depth
image by aligning the model to the image and measuring
differences between every point on the two facial surfaces. The
model and the image will not match exactly due to sensor
noise, occlusions, as well as changes in expression, hairstyle,
and eye-wear; therefore, we leverage a data driven approach to
determine whether or not the model and the image match. We
train a random decision forest to verify the identity of a subject
where the point-to-point distances between the reference model
and the depth image are used as input features to the classifier.
Our approach runs in real-time and is designed to continuously
authenticate a user as he/she uses his/her device. In addition,
our proposed method outperforms existing 2D and 3D face
verification methods on a benchmark data set.

I. INTRODUCTION

Face verification and recognition is the task of authenti-

cating the identity of a person within an image, and it has

been an active research topic for the past several decades

[1]. Face verification is still a difficult problem due to the

wide range of possible head poses and facial expressions.

There has been a wealth of 2D face verification methods

proposed over the years [2], [3], [4], [5], and there have been

some recent advancements using deep convolutional neural

networks [6], [7]. However, 2D methods are still not widely

used for authentication since they are easily fooled with

a photograph. Face verification using 3D sensors has the

potential to be a more secure and reliable mode of authenti-

cation, and there has been a variety of 3D face verification

methods proposed [8], [9], [10], [11]. Unfortunately, these

methods often require high-quality 3D data captured from a

high-end 3D sensor in a controlled environment and are not

always practical for real-world situations.
We propose a system that uses a consumer-grade depth

camera, such as Microsoft’s Kinect, to perform real-time

face verification in an uncontrolled environment. There are

several benefits of using a depth camera for face verification.

Depth cameras use infrared light to measure the 3D geom-

etry of an environment; therefore, they are less sensitive

to external illumination. In addition, with a 3D approach

we can utilize a full 3D face model, which allows our

technique to be more robust to changes in pose. There are

also challenges associated with using a depth camera, as

they are often noisy and low resolution.

To be able to verify the identity of a subject, we first

construct a high-quality reference model offline by fitting

a 3D morphable face model [12] to a sequence of depth

images. Given a novel depth image and a reference model,

we can authenticate the user at runtime by aligning the

reference to the image and measuring the similarity of the

two facial surfaces.

To align the model and the image we need to estimate the

pose of the subject’s head within the image. To accurately

estimate the head pose, we utilize a state-of-the-art 3D head

pose estimator [13], which uses a combination of particle

swarm optimization (PSO) and the iterative closest point

(ICP) algorithm to precisely align a 3D face model to a

depth image. Unfortunately, the method proposed in [13]

does not run in real-time. We propose an extension to their

work, which dynamically changes the number of particles

within the swarm to reduce computation when possible. We

evaluate our modification to [13] on the Biwi Kinect head

pose data set [14], and we show that we can significantly

improve runtime performance without sacrificing accuracy.

To accurately compare the reference model to the image

under a wide variety of real-world situations such as partial

occlusions, changes in pose or expression, and alterations in

hairstyle or eye-wear, we use a data driven approach. We

train a random decision forest [15] to verify the identity

of a subject based on the point-to-point distances between

the reference model and the depth image. We evaluate our

approach on the Eurecom Kinect face data set [16], and we

demonstrate superior results compared to existing state-of-

the-art 2D and 3D face verification methods on this data

set.

Since our proposed method runs in real-time, we can

continuously authenticate a person while he/she uses his/her

device. For example, when a trusted user sits down at his/her

computer, he/she is immediately authenticated and granted

access, and when the user leaves or an intruder is detected,

we can instantly revoke privileges.

II. RELATED WORK

A wide variety of 2D and 3D face verification methods

have been proposed over the decades [1]. A large portion

of the proposed techniques perform face verification on 2D

images [2], [3], [4], [5], [6], [7]. [2] represents a 2D face

image as a linear combination of basis images, also known

as Eigenfaces [17], and trained a support vector machine

(SVM) to determine whether or not two face images match.

71

2018 15th Conference on Computer and Robot Vision

978-1-5386-6481-0/18/$31.00 ©2018 IEEE
DOI 10.1109/CRV.2018.00020

[3] represents the face with a set of Gabor wavelet features.

They use the AdaBoost algorithm to select the best wavelet

features for distinguishing a subject from other subjects,

and they train a SVM using these features. [4] utilizes a

convolution neural network to map a face image to a feature

space, such that, the Euclidean distance between feature

vectors represents how similar two faces are to each other.

[5] learned two separate classifiers to perform face verifi-

cation. One classifier recognizes attributes such as gender,

race, age, physique, hairstyle, eye-wear, etc. The presence

or absence of these features are used to verify a person’s

identity. The second classifier measures the similarity of

facial regions. [5] combines the results of both classifiers

to verify the identity of a subject. [6] proposed a similar

method to [4], but uses a deep network to map an image to

a feature vector, and they train a SVM using these features.

Most recently, [7] proposed another approach that uses a

deep neural network to learn a Euclidean embedding of face

images for recognition, verification, and clustering. [6], [7]

leverage deep convolutional neural networks to sufficiently

outperform all previous 2D methods. Face verification tech-

niques that utilize 2D images typically work well under

ideal lighting conditions and when the face is viewed from

a frontal position, and their accuracy can degrade when this

is not the case. Leveraging 3D data for face verification has

the potential to overcome these limitations. 3D sensors often

emit their own light, so they are less affected by external

lighting conditions. In addition, by leveraging a full 3D

model of the face, it is possible for 3D methods to be less

influenced by changes in head pose.

Several methods that utilize 3D information have been

proposed for face verification [8], [9], [10], [11]. [8] aligns

the profiles of two 3D facial surfaces, and uses the residual

error after alignment to compare the similarity of the two

faces. In addition, they compare the difference in the inten-

sity images, which were used to reconstruct the geometry

of the face. [9] uses the Hausdorff distance to compare two

aligned 3D face models. [10] uses spin images [18] to detect

facial features. The location of the features are used to create

a normalized depth image of the face. Principal Component

Analysis (PCA) is used to project the depth images to

an eigenvector subspace. A SVM classifier is trained to

verify faces within this eigenspace. [11] constructs a 3D

model of a person’s face by merging a set of depth images

captured by a laser scanner. Given a novel depth image,

they align the image to a 3D model using iterative closest

point (ICP), and the residual error after alignment is used

to verify the subject. Like [8], [11] also considers the 2D

appearance of the user by comparing an intensity image to an

image synthesized by rendering the 3D model. Previous 3D

face verification methods often require high-quality 3D data

and/or both 2D and 3D data to accurately identify a user. We

propose a method for 3D face verification using only low-

quality depth images captured by a consumer-grade camera.

III. METHOD

A. Model Fitting

Before we can attempt to verify the identity of a subject,

we must create a reference model of person for comparison.

We create a reference model of the person’s face by fitting

a 3D morphable face model to a set of depth images. A

morphable model consists of an average 3D face shape μ
and a set of 3D face shape bases S = (s1, s2, . . . , sM),
where M = 199 [12]. A novel face shape is produced

through a linear combination of the mean face and face

bases,

Ŝ = μ+

M∑
m=1

αmsm = μ+ Sα. (1)

To fit the morphable model we need to identify the coeffi-

cients α = (α1, α2, . . . , αM), such that, the face shape Ŝ
best matches our subject.

A single depth image is too noisy to accurately fit

a model; therefore, we capture a video sequence of the

subject’s head in a variety of poses. We fit the model to

a subset of depth images from the video sequence selected

at uniform intervals. For each depth image i, we identify a

set of corresponding points Ci by finding the closest points

between the image and the model. We jointly solve for the

coefficients of the morphable model α and the pose of each

depth image {Ri, ti} by minimizing the following objective

function:

min
α,{Ri,ti}

∑
i

∑
j∈Ci

(
wij ‖(Rivij + ti)− (μij + Sijα)‖2

)
+λ ‖α‖2

(2)

where (i, j) is the j-th corresponding point from the i-th
image, vij is a 3D measurement from the i-th depth image,

and μij and Sij are the mean and bases of a single vertex

from the morphable model corresponding to vij . To reduce

the effect of outliers, the point correspondences are weighted

inversely proportional to the distance between them, wij .

Also, we use a stiffness term λ to control how much the

morphable model is allowed to deform.

We initialize the coefficients α to zero, and we initialize

each pose {Ri, ti} using the method described in the

following section. We repeatedly solve Eq. (2) to refine our

estimate of the coefficients and poses. For each iteration, we

update our point correspondence between the images and

the model. In addition, we will reduce the stiffness term

λ if the previous iteration did not significantly change the

coefficients. We iterate until λ below a certain threshold.

We use Ceres Solver’s [19] implementation of conjugate

gradient method to solve Eq. (2). For all of our experiments,

we use 25 images as a trade-off between quality and

computational complexity. Examples reference models are

shown in Figure 1.

72

Figure 1: Example reference models (bottom row) constructed by fitting a 3D morphable face model [12] to a point cloud

(middle row) assembled from a set of depth images. Color images (top row) are shown only for demonstration purposes,

and they are not used by our system.

B. Pose Estimation

To verify whether or not a depth image matches a refer-

ence model, we first need to align the model to the image

so that we can measure differences. We use the method

proposed by Meyer et al. [13] to estimate the pose of the

subject’s head within the image. They use a combination of

particle swarm optimization (PSO) and the iterative closest

point (ICP) algorithm to accurately align a morphable face

model to the depth data [13].

PSO is an evolutionary algorithm that uses a collection

of particles to search for a global optimum in a non-convex

parameter space [20]. The position of each particle in the

swarm represents a potential head pose, x = (θx, θy, θz,
tx, ty, tz), and a pose is evaluated using the following cost

function:

E(x) = Ev(x) + ηEc(x) (3)

where the term Ev(x) measures the point-to-plane distance

between the image and the model in pose x, and Ec(x)
penalizes a pose x when there are few corresponding points

between the model and the image [13]. Each generation,

the particles update their position based on their relative

position to the other particles in the swarm. Afterwards, ICP

is used to push the particles towards a local minima of the

parameter space, which is shown by [13] to improve the

overall convergence rate of PSO.

The original method proposed in [13] does not run in

real-time. However, we observed that the entire swarm of

particles is not always necessary to accurately estimate the

pose in every frame. If the pose is correctly estimated in

the previous frame, then only a few particles are required to

update the pose in the subsequent frame. The more particles

there are in the swarm, the more computation that needs

to be performed. For this reason, we propose a variant of

[13] that dynamically updates the number of particles in

the swarm. By dynamically resizing the swarm, we can

improve the runtime performance of the algorithm without

significantly affecting accuracy.

The distance term Ev of the cost function (Eq. 3) gives us

an indication of the accuracy of the estimated head pose, x∗.
When we correctly identify the pose, the value of Ev(x

∗)
should be around the expected measurement error of the

depth camera. Therefore, we can update the size of the

swarm for the next frame using the following procedure:

Pk+1 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Pmax if Ev(x
∗)� e

Pk + 1 else if Ev(x
∗) > e and Pk < Pmax

Pk − 1 else if Ev(x
∗) ≤ e and Pk > Pmin

Pk otherwise
(4)

where Pk is the number of particles in the current frame k,

73

Pmin = 1 and Pmax = 10 are the minimum and maximum

number of particles in the swarm, respectively, and e is the

expected measurement error of our sensor. For the Kinect

camera, we experimentally determined e ≈ 5 mm.
In addition, [13] alternates between estimating the head

pose and updating the shape of the morphable model to

fit the measured depth. Since we already fit the morphable

model to the subject, we are able to skip the model update

step and avoid additional computation. As a result, we are

able to estimate the pose in real-time.

C. Distance Measurements
Once we align the reference model to the image, we can

measure the differences between the two facial surfaces. We

use a morphable model to create our reference model for

every subject; therefore, each model will have the same

number of vertices with the same topology. As a result,

we can measure the same set of distances between any

model and image regardless of the subject, which allows

us to leverage a data driven approach to learn what facial

similarities are important for accurately verifying the identity

of a subject.
To measure the distance between a model and an image,

we project every vertex from the reference model into the

depth image,

v̂i = Rvi + t,
[
x y 1

]T
= Kv̂i (5)

where vi is the i-th vertex in the reference model, R and t
are the rotation matrix and translation vector that align the

reference model to the image, K is the camera’s intrinsic

calibration matrix, and (x, y) is the corresponding pixel

coordinate in the depth image. Assuming a vertex is not self-

occluded and the image is not missing data, we can compute

the distance between a vertex and its corresponding depth

measurement,

δi = |D(x, y)− v̂zi | (6)

where D(x, y) is the (x, y)-th measurement in the depth

image and v̂zi is the z-component of vertex v̂i. Often,

measurements are missing from the depth image due to

sensor noise and inaccuracies, and model vertices can be

self-occluded due to head pose. In these situations, we set

the distance δi to positive infinity. To reduce noise in the

distances, we take the average over neighboring vertices,

δ̄i =

∑
k∈Ni

δk · 1δk<∞∑
k∈Ni

1δk<∞
(7)

where Ni is the 1-ring neighborhood of vertex vi defined

by the mesh topology of the reference model and 1δk<∞ is

an indicator function.
All the distances are aggregated into a distance vector δ =

(δ̄1, δ̄2, . . . , δ̄N), where the length of the vector is equal to

the number of vertices in the reference model (N = 53490).

Figure 2 visualizes the distances measured by our proposed

method.

D. Face Verification

The distance vector δ could be used in a variety of

ways to verify a subject’s identity. The simplest way is to

compute the mean or medium of all the finite elements in δ
and compare it to a threshold. However, due to occlusions,

changes in pose or expression, and alterations in hairstyle

or eye-wear, this simple approach may not be sufficient to

accurately authenticate a user. Instead, we chose to use a data

driven approach to learn how to precisely verify a person

using the distance vector as a feature vector. Specifically,

we use a random decision forest [15] for its simplicity to

train, and its past success in 3D vision [21], [22].

A random decision forest consists of an ensemble of

decision trees. Each tree in the forest is trained using a set of

training examples. The examples are selected randomly from

the data set with replacement. A training example consists of

a reference model and a depth image, and a label indicating

whether or not the model and the image represent the same

person. There are significantly more negative examples (the

reference model and the depth image are different people)

than positive examples (the reference model and the depth

image are the same person), and this imbalance can pose a

problem for training. Therefore, we re-weight the examples

so that positive examples have a p probability of being

drawn and negative examples have a chance of (1 − p). A

natural choice for p is 0.5, but we experimentally found that

p = 0.25 produces better results.

To train a decision tree, we begin by extracting all the

features from its set of training examples S = {δn}.
For each non-leaf node in the tree, we randomly select a

subset of features and corresponding thresholds {δi, τi}, and

determine which feature/threshold pair provides the most

information gain,

max
{δi,τi}

G(S ′, δi, τi) = H(S ′)−
(|SL|
|S ′|H(SL) + |SR|

|S ′| H(SR)
)

(8)

where H(·) is the class uncertainty measure of a set, |·| is the

size of a set, S ′ ⊂ S is the subset of training examples that

reach the node, SL = {δn | δni < τi, δ
n ∈ S ′} is the subset

of training examples in S ′ with feature δi less than τi, and

SR = S ′ \ SL [15]. The class uncertainty measurement or

entropy of the set is defined as follows:

H(S) = −
(|S|+
|S| log2

|S|+
|S|

)
−
(|S|−
|S| log2

|S|−
|S|

)
(9)

where | · |+ and | · |− are the number of positive and negative

examples in a set, respectively. When a leaf node is reached,

either due to reaching the maximum depth of the tree or

there are too few training examples at the node, then the

probability of an positive example reaching this node, p =
|S ′|+/|S ′|, is recorded.

To test whether or not a novel example is positive, i.e.
verify a depth image matches a reference model, we extract

74

Figure 2: The distances (fourth row) are computed by aligning and projecting our reference model (third row) into a depth

image (second row) and computing the difference. These distances are used to verify the identity of a subject. The first three

columns depict positive examples where the reference model and the depth image share the same identity. The remaining

columns illustrate negative examples. Observe how the distances change between the positive and negative examples. Color

images (first row) are only shown for demonstration purposes, and they are not used by our system.

features from the example and pass it to each tree in the

random forest. At each non-leaf node, we use the stored

feature/threshold pair to determine our path through the

tree. Once we reach a leaf node in every tree, we average

the stored probabilities to produce an overall probability

indicating how likely the image and the model are the same

person. If the probability is above a threshold, we claim the

image and the model share the same identity.

IV. EXPERIMENTAL RESULTS

A. Pose Estimation
We evaluate [13] and our extension to it on the Biwi

Kinect head pose data set [14] using an Intel Core i7

CPU and NVIDIA GeForce GTX 660 GPU. The data set

contains over 15K RGB and depth images captured by a

Kinect camera. For each image, a ground truth head pose

(rotation and translation) is provided. The accuracy and

runtime performance for each approach is listed in Table

I.
The effect of dynamically changing the number of parti-

cles in the swarm can be seen by comparing the second and

third rows of Table I. The accuracy is reduced by a small

amount, but the runtime performance is greatly improved. In

addition, the original method proposed by Meyer et al. [13]

estimates both the head pose and the shape of the morphable

model for every frame. Since we fit the morphable model

to the subject beforehand, we can avoid this additional

computation, and the time saved is shown in the first row of

Table I. For more information and additional comparisons to

existing head pose estimation methods please refer to [13].

Our modification to [13] enables our system to accurately

estimate the head pose in real-time.

B. Face Verification

Our goal is to design an real-time system for face veri-

fication using low-quality depth images from a consumer-

grade depth camera. Therefore, we require a data set that

contains multiple video sequences of a variety of subjects

captured by a Kinect camera or similar device. We measure

the performance of our method, as well as, existing state-of-

the-art methods using the Eurecom Kinect face data set [16].

The data set is comprised of 52 subjects, 38 males and 14

75

Method Model
Errors

RuntimeYaw Pitch Roll Location
Proposed* Custom 2.2◦ 2.3◦ 2.4◦ 5.4 mm 39.5 ms
Proposed Morph 2.3◦ 2.3◦ 2.6◦ 5.4 mm 64.4 ms

Meyer [13] Morph 2.0◦ 2.1◦ 2.3◦ 5.1 mm 154.6 ms

Table I: The average absolute angular errors, the average

translational error, and the average runtime on the Biwi

Kinect data set, for our modification of [13], as well as,

the original method.

females, with ethnicities including European, Asian, Indian,

African, and Hispanic. The data set contains two video

sequences per subject captured during different sessions. For

each sequence, the subjects are positioned approximately a

meter from the camera. The sequences exhibit a wide range

of head poses with only moderate changes in expression. The

entire data set contains over 50K RGB and depth images.

1) Testing Procedure: For our method and the existing

methods we compare against, we use the same procedure

to evaluate an approach on the data set. For each video

sequence of a subject, we define a model. The model could

be an image, a set of images, a 3D mesh, or some other

representation of the subject’s identity as specified by the

method we are testing. Afterwards, we compare the model

to all other images in the data set, and compute a similarity

value as defined by the method. It is important to note

that we do not compare the model to the sequence used to

construct it. The similarity value is compared to a threshold

to determine the method’s true positive and false positive

rate. We vary the threshold to obtain the receiver operating

characteristic (ROC) of the approach.

2) Evaluation of Our Approach: To evaluate our pro-

posed method on the data set, we use 3-fold cross validation.

The data set is randomly partitioned into roughly three equal

subsets where each subset contains either 17 or 18 subjects,

and we perform three rounds of training and testing. In each

round, two subsets are used for training the random decision

forest and the remaining subset is used for testing. Each

subset contains approximately 13,500 positive examples and

850,000 negative examples.

For each fold, we trained a random forest of T decision

trees each with 50,000 randomly selected training examples

to a depth of D. At each non-leaf node we randomly select

(100 × d) feature/threshold pairs where d is the depth of

the node. We measure the performance of our method by

averaging the results across each fold.

We analyze the behavior of our approach using a variety of

different configurations. Figure 3 depicts the performance of

our method when we vary the number of trees T in the forest

and fix the maximum depth to D = 20. Beyond 100 trees,

we experience diminishing gains in performance. Figure 4

shows the results when we fix the number of trees to T =
100 and vary the maximum depth D. Allowing the depth of

the trees to go beyond 20 levels does not change the output

Figure 3: The ROC curves of our proposed method when we

vary the number of decision trees within the random forest.

Figure 4: The performance of our approach when we change

the maximum depth of the decision trees.

of the random forest because most of the trees do not reach

a depth greater than 20 levels. Notice the classifier does not

overfit the training data as the number of trees and maximum

depth increase; this is a benefit of using the random decision

forest [15]. For all the following experiments, we fix the

number of trees to T = 100 and the maximum depth to

D = 20.

To gain further insight into what is learned by the random

decision forest, we count the number of times an element

of our feature vector δ is used by a decision tree to classify

an image. The frequencies are illustrated in Figure 5. The

random forest is learning to focus on the parts of the face

with the most distinctive shapes, specifically the nose, brow,

chin, and cheeks. Notice, the classifier is capable of learning

to prioritize parts of the face that are visible, as we can see

in Figure 5ac.

76

(a) (b) (c)

Figure 5: A set of heat maps representing the prevalence

of the features within the random decision forest. The heat

maps show the number of times a feature is used by the

random forest to classify an image when the subject is

looking (a) left (yaw angle is less than −30◦), (b) forward

(yaw angle is between −30◦ and 30◦), and (c) right (yaw

angle is greater than 30◦). Notice the subtle difference

between (a) and (c) where the classifier learned to focus

on the side of the face that is visible.

For all of our experiments, we perform face verification

using a single depth image; however, it is possible to

improve our method’s performance by combining the results

from a series of images. To this end, we use a sliding window

to collect the output of our algorithm for a sequence of

images, and the majority decision is used as the decision for

entire window. Figure 6 shows the results when the sliding

window contains 1, 5, and 10 seconds of video where the

video is captured at 30 frames per second. These results

motivate a possible future extension of our work, where

multiple depth images are combined together to improve

accuracy. One approach could be to integrate a sequence of

depth images into a 3D model like in [23] and [24], and

perform verification using this model instead of an image.

Although, this approach would require more cooperation by

the user.

3) Comparison with Existing Methods: We compare our

method to existing state-of-the-art 2D and 3D face verifica-

tion methods on the data set, and the results are shown in

Figure 7.

For 2D methods, we compare against FaceNet [7].

FaceNet is a state-of-the-art method that leverages a deep

convolutional neural network to map 2D face images to a

Euclidean space where distances can be used to measure

face similarity [7]. We use OpenFace [25], the open source

implementation of FaceNet, to embed each image in the data

set into this feature space. For each sequence, we hand select

an image to be used as the subject’s reference model. The

squared L2 distance in the Euclidean space is used as the

measure of similarity between the model and the data set

images. The performance of FaceNet using a single image

is depicted as the dashed red line in Figure 7.

Our proposed method uses multiple images from a video

sequence to construct the 3D reference model of a subject. In

Figure 6: The performance of our method when we use a

sliding window to combine the decision for a sequence of

images. We show the results for when the sliding window

contains 30, 150, and 300 frames, which is approximately

1, 5, and 10 seconds of video, respectively.

Figure 7: Our proposed method compared to existing state-

of-the-art 2D and 3D face verification methods [7], [9], [10].

order to fairly compare our method with FaceNet, we replace

the single hand selected image with the same 25 images

used to construct our 3D face model. We use the minimum

distance between all the reference images and a test image

as the measure of similarity. We also experimented with

using the mean and medium distance, but the minimum

distance performed the best. The performance of FaceNet

using multiple images is shown as the solid red line in Figure

7.

To examine how our proposed method and FaceNet deal

with variations in head pose, we fix the false positive rate

to 10−3 and compute the true positive rate as a function of

yaw and pitch. As shown in Figure 8, our proposed method

77

Figure 8: The true positive rate as a function of head pose (yaw and pitch) for our proposed method and FaceNet [7] on

the Eurecom Kinect face data set [16]. The false positive rate for each method is fixed to 10−3.

does well across a wide range of head poses, which is a

benefit of using a 3D method over a 2D method for face

verification.

For 3D methods, we compare against two state-of-the-art

methods, [9] and [10]. [9] uses the partial Hausdorff distance

to measure the similarity of two facial surfaces. To evaluate

[9], we compute the partial Hausdorff distance between our

3D face models and the 3D point clouds generated by back-

projecting the depth images in the data set. The results are

illustrated as the green line in Figure 7. We believe we are

able to obtain superior results to [9] because our approach

learns how to adapt to the data.

[10] uses the estimated head pose to frontalize the depth

images. Afterwards, the depth images are converted to

Gaussian images, and principle component analysis (PCA)

is performed on the entire data set. Each image is projected

onto the vector space spanned by the top K principal

components, and Conde et al. [10] trains a support vector

machine (SVM) to distinguish between images of and not

of the subject within this vector space. For our experiments,

we used K = 2500 principal components, and the results

are shown as the magenta line in Figure 7. We believe [10]

does not perform well on this data set because the depth

images from the Kinect camera are noisy and contain holes.

Our approach outperforms existing state-of-the-art 2D and

3D face verification methods on the Eurecom Kinect face

data set [16]. We believe the strength of our approach is that

we measure the distances between every point of the model

and the image, and we learn which of these differences are

important for authentication.

V. CONCLUSION

We proposed a real-time system for 3D face verification

using a low-cost depth camera. We authenticate a subject by

comparing a depth image to a 3D morphable model which

was fit to their face. We leverage an existing state-of-the-art

head pose estimator which we modify to run in real-time.

We trained a random decision forest to learn what facial

features are important for measuring the similarity between

the image and the reference model. Our proposed method

outperforms existing state-of-the-art 2D and 3D methods on

a benchmark data set.

REFERENCES

[1] A. F. Abate, M. Nappi, D. Riccio, and G. Sabatino, “2d and
3d face recognition: A survey,” Pattern Recognition Letters,
vol. 28, no. 14, pp. 1885–1906, 2007.

[2] K. Jonsson, J. Matas, J. Kittler, and Y. Li, “Learning support
vectors for face verification and recognition,” in Automatic
Face and Gesture Recognition, 2000. Proceedings. Fourth
IEEE International Conference on. IEEE, 2000, pp. 208–
213.

[3] M. Zhou and H. Wei, “Face verification using gaborwavelets
and adaboost,” in Pattern Recognition, 2006. ICPR 2006. 18th
International Conference on, vol. 1. IEEE, 2006, pp. 404–
407.

[4] S. Chopra, R. Hadsell, and Y. LeCun, “Learning a similarity
metric discriminatively, with application to face verification,”
in Computer Vision and Pattern Recognition, 2005. CVPR
2005. IEEE Computer Society Conference on, vol. 1. IEEE,
2005, pp. 539–546.

[5] N. Kumar, A. C. Berg, P. N. Belhumeur, and S. K. Nayar,
“Attribute and simile classifiers for face verification,” in
Computer Vision, 2009 IEEE 12th International Conference
on. IEEE, 2009, pp. 365–372.

[6] Y. Taigman, M. Yang, M. Ranzato, and L. Wolf, “Deepface:
Closing the gap to human-level performance in face verifica-
tion,” in Computer Vision and Pattern Recognition (CVPR),
2014 IEEE Conference on. IEEE, 2014, pp. 1701–1708.

[7] F. Schroff, D. Kalenichenko, and J. Philbin, “Facenet: A
unified embedding for face recognition and clustering,” in
Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2015, pp. 815–823.

[8] C. Beumier and M. Acheroy, “Face verification from 3d and
grey level clues,” Pattern recognition letters, vol. 22, no. 12,
pp. 1321–1329, 2001.

[9] G. Pan, Z. Wu, and Y. Pan, “Automatic 3d face verification
from range data,” in Acoustics, Speech, and Signal Pro-
cessing, 2003. Proceedings.(ICASSP’03). 2003 IEEE Inter-
national Conference on, vol. 3. IEEE, 2003, pp. III–193.

[10] C. Conde and A. Serrano, “3d facial normalization with spin
images and influence of range data calculation over face
verification,” in Computer Vision and Pattern Recognition-
Workshops, 2005. CVPR Workshops. IEEE Computer Society
Conference on. IEEE, 2005, pp. 115–115.

78

[11] X. Lu, A. K. Jain, and D. Colbry, “Matching 2.5 d face scans
to 3d models,” Pattern Analysis and Machine Intelligence,
IEEE Transactions on, vol. 28, no. 1, pp. 31–43, 2006.

[12] V. Blanz and T. Vetter, “A morphable model for the synthesis
of 3d faces,” in Conf. on Computer Graphics and Interactive
Techniques, 1999, pp. 187–194.

[13] G. P. Meyer, S. Gupta, I. Frosio, D. Reddy, and J. Kautz, “Ro-
bust model-based 3d head pose estimation,” in Proceedings
of the IEEE International Conference on Computer Vision,
2015, pp. 3649–3657.

[14] G. Fanelli, M. Dantone, J. Gall, A. Fossati, and L. Van Gool,
“Random forests for real time 3d face analysis,” Int. J. Comp.
Vision, vol. 101, no. 3, pp. 437–458, 2013.

[15] L. Breiman, “Random forests,” Machine learning, vol. 45,
no. 1, pp. 5–32, 2001.

[16] R. Min, N. Kose, and J.-L. Dugelay, “Kinectfacedb: A kinect
database for face recognition,” Systems, Man, and Cybernet-
ics: Systems, IEEE Transactions on, vol. 44, no. 11, pp. 1534–
1548, Nov 2014.

[17] M. Turk and A. Pentland, “Eigenfaces for recognition,” Jour-
nal of cognitive neuroscience, vol. 3, no. 1, pp. 71–86, 1991.

[18] A. E. Johnson, “Spin-images: a representation for 3-d surface
matching,” Ph.D. dissertation, Carnegie Mellon University,
1997.

[19] S. Agarwal, K. Mierle, and Others, “Ceres solver,”
http://ceres-solver.org.

[20] J. Kennedy, “Particle swarm optimization,” in Encyclopedia
of Machine Learning, 2010, pp. 760–766.

[21] G. Fanelli, T. Weise, J. Gall, and L. Van Gool, “Real time head
pose estimation from consumer depth cameras,” in Pattern
Recognition, 2011, pp. 101–110.

[22] J. Shotton, T. Sharp, A. Kipman, A. Fitzgibbon, M. Finocchio,
A. Blake, M. Cook, and R. Moore, “Real-time human pose
recognition in parts from single depth images,” Comm. ACM,
vol. 56, no. 1, pp. 116–124, 2013.

[23] M. Hernandez, J. Choi, and G. Medioni, “Laser scan quality
3-D face modeling using a low-cost depth camera,” in Signal
Processing Conference (EUSIPCO), 2012 Proceedings of the
20th European, Aug 2012, pp. 1995–1999.

[24] G. P. Meyer and M. N. Do, “Real-time 3d face modeling
with a commodity depth camera,” in 2013 IEEE International
Conference on Multimedia and Expo (ICME). IEEE, 2013,
pp. 1–4.

[25] B. Amos, B. Ludwiczuk, J. Harkes, P. Pillai, K. Elgazzar, and
M. Satyanarayanan, “OpenFace: Face Recognition with Deep
Neural Networks,” http://github.com/cmusatyalab/openface.

79

