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RESULTS

e QOur approach 1s evaluated and compared against previous methods on two datasets:

INTRODUCTION OVERVIEW

e 3D object detection 1s a key capability for
autonomous driving.

e [LaserNet 1s an efficient and probabilistic
3D object detector based on LiDAR.

e LiDAR is inherently dense from the sen-
sor’s point of view but sparse when pro-

Height

— The ATG4D object detection dataset (1.2 million training sweeps)
— The KITTTI object detection benchmark (7,481 training sweeps)
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e Following the KITTI benchmark, only detections within the front 90° field of view of
the sensor and up to 70 meters are considered.
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jected into 3D space. Input Channels (5) Class Probabilty Per Point Decoded Boxes Per Instance Mean Box Table 1: BEV Object Detection Performance on ATG4D
: : . . _ Method Input Vehicle AF, - Bike AF,5 Pedestrian AF, 5
® The ei:‘ﬁCI.enCy Of our deteCtO.r 1S .due tO SensorRange View (perpoint data) Output Top-Down View LaserNet (OU.I'S) [1DAR 85_.34 61.93 80.3,—7
operating in the dense range view instead Eggﬁ Egﬁ% gg,gg _ _
: . . : . ++ i . - -
of a sparse top-down view. Our method uses the inherent range view representation of the LiDAR. ContFuse _LiDAR 3313 5727 7351
Our method captures the uncertainty of a A fully-convolutional neural network produces a set of predictions for each point. Contiuse LIDAR+RGE 8.1/ ol.13 /6.84

detection by predicting the distribution of

For each point, we predict a set of class probabilities, and we regress a probability
bounding box corners.

C , , Table 2: Ablation Study on ATG4D
distribution over bounding boxes in the top-down view.

Predicted Distribution Image Spacing Mean Shift  IoU Threshold NMS Type | Vehicle AF,
On a large benchmark dataset, LaserNet These per-point predictions are combined through mean shift clustering. Mean-only waser REE 0.1 rard IS
achieves state-of-the-art detection perfor- - - S - mnimodal vniform es o rare £S5
p The entire detector 1s trained end-to-end with the loss defined on the box corners. Unimodal Laser No 8.% Harg gg.g%
I 19N]1 I : . . . : : o Unimodal Laser Yes : Har :
mance with significantly lower runtime. At inference, a novel adaptive non-maximum suppression algorithm is utilized. Multmodal T aser Ves 0. Hard 2T 80
Multimodal Laser Yes N/A Soft 84.43
Multimodal Laser Yes Adaptive Hard 83.68
M ETHOD Multimodal Laser Yes Adaptive Soft 85.34

1 NETWORK ARCHITECTURE 3 MEAN SHIFT CLUSTERING Table 3: BEV Object Detection Performance and Runtime on KITTI

Method Input Vehicle AR 7 Runtime
input A PT : _ Easy Moderate Hard | Forward Pass (ms) Total (ms)

Th : : bi { input e Per-point pre(.hctlons a.re combined thor S Ki; (m; -|S;]) LaserNet (Ours) LiDAR 78.25 73.77 66.47 12 30

e lherange image contains objects ) i ough mean shift clustering. . < JEWUN (i) %I \77% 177 PIXOR LiDAR 81.70  77.05  72.95 35 62

Feature Extracor | b —ert : - v g, PIXOR++ LiDAR 39.38 83.70 77.97 35 62

;ﬁtm:iroyafzﬁgls ;\:ﬁl fhousand Y - e For efficiency, mean shift 1s performed 2 jeiun () Kisl 5] VoxelNet LiDAR | 8935 7926  77.39 190 225

: L r box centers. and th _down Vi MV3D LiDAR+RGB | 86.02 7690  68.49 : 360

® A dee la er a re atlon network N -~ Downsarﬁp”ngpath ?4,( Ove bO . ¢ te S, a d t © top dOW View ||mz — mj ||2 AVOD LIDAR+RGB 8853 8379 7790 80 100

. player aggreg I I o Upemeingpen T is discretized into bins of size Az by Ay. K;j=exp| — AZ 1 A2 F-PointNet LiDAR+RGB | 88.70 ~ 84.00  75.33 : 170

1s used to effectively extract and o B e Predictions that fall into the same bin are L7+ Ay ContFuse LiDAR+RGB | 88.81  85.83  77.33 60 -
' ' v : . 2\b.
combine multi-scale features. v e averaged, and the means are iteratively up- g _ 2_jes, (1/05)b;

2 PREDICTIONS

e The network 1s trained to predict a set of class probabilities for each point in the 1mage.
e (iven a point i1s on an object, the network predicts a distribution over bounding boxes. e
e Instead of directly estimating the box corners, the network predicts a center, orientation,

and dimensions relative to the point.
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4 END-TO-END TRAINING

Classification Loss

Las=—Y yi(1—p;)" logp;

1=1

For each point in the image, we use focal
loss to learn the class probabilities.

e For each point on an object, we use the
hindsight loss to learn the mixture model.

} Focal Loss

Regression Loss

T T . :
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¢ = 0 + atan2 (wy,, wy) ground-truth is updated by penalizing the ~ = 20 : 2 Hkelhood
negative log likelihood. k* = arg min ||by, — by
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mix — k=k* 1 ross Entropy
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S | o | S ADAPTIVE NON-MAXIMUM SUPPRESSION
e The distribution can be multimodal when the object 1s only partially observed. o=
. . . 4+ =-=-a (> 774 774
e We model the multimodal probability distribution with a mixture model. e Non-maximum suppression 1s performed = | T
e The network is trained to predict a set of means, {d i, dy &, Wa k, Wy k> L, wk}le, to remove boxes with an intersection over | i A
: : . K : : K union (IoU) greater than a threshold. | o | 1B |
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———— e Due to the uncertainty in the predictions, | - | | |
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Occluder| | ! _ N R r ' 1N |
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Autonomous -, \:@@ : threshold based on their predicted standard , 2 g 4oy <w
Vehicle e _: ______ deviations. = 1 otherwise

e On the small dataset, our approach under-performs compared to state-of-the-art meth-
ods, but on a significantly larger dataset, our method out-performs the previous work.

e Runtime performance 1s equally important for the purpose of autonomous driving, and
our method 1s twice as fast as the fastest state-of-the-art method.

e Predicting a probability distribution over bounding boxes 1s a key aspect of our ap-

proach as shown 1n the ablation study.

e We suspect the KITTI training set does not contain enough examples to accurately
learn the distribution (as shown below), explaining the difference in performance.
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(b) Calibration on ATG4D

Figure 1: Plots showing the calibration of the predicted distribution over bounding boxes
on the train and validation sets. A perfectly calibrated distribution corresponds to a line

with unit slope (dashed line 1n the plots).



