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• Our method uses the inherent range view representation of the LiDAR.
• A fully-convolutional neural network produces a set of predictions for each point.
• For each point, we predict a set of class probabilities, and we regress a probability

distribution over bounding boxes in the top-down view.
• These per-point predictions are combined through mean shift clustering.
• The entire detector is trained end-to-end with the loss defined on the box corners.
• At inference, a novel adaptive non-maximum suppression algorithm is utilized.

INTRODUCTION

• 3D object detection is a key capability for
autonomous driving.

• LaserNet is an efficient and probabilistic
3D object detector based on LiDAR.

• LiDAR is inherently dense from the sen-
sor’s point of view but sparse when pro-
jected into 3D space.

• The efficiency of our detector is due to
operating in the dense range view instead
of a sparse top-down view.

• Our method captures the uncertainty of a
detection by predicting the distribution of
bounding box corners.

• On a large benchmark dataset, LaserNet
achieves state-of-the-art detection perfor-
mance with significantly lower runtime.

METHOD

1 NETWORK ARCHITECTURE

• The range image contains objects
that vary from several thousand
points to a single point.

• A deep layer aggregation network
is used to effectively extract and
combine multi-scale features.

2 PREDICTIONS

• The network is trained to predict a set of class probabilities for each point in the image.
• Given a point is on an object, the network predicts a distribution over bounding boxes.
• Instead of directly estimating the box corners, the network predicts a center, orientation,

and dimensions relative to the point.
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• The distribution can be multimodal when the object is only partially observed.
• We model the multimodal probability distribution with a mixture model.
• The network is trained to predict a set of means, {dx,k, dy,k, ωx,k, ωy,k, lk, wk}Kk=1,

with corresponding variances, {sk}Kk=1, and mixture weights, {αk}Kk=1.

3 MEAN SHIFT CLUSTERING

• Per-point predictions are combined thor-
ough mean shift clustering.

• For efficiency, mean shift is performed
over box centers, and the top-down view
is discretized into bins of size ∆x by ∆y.

• Predictions that fall into the same bin are
averaged, and the means are iteratively up-
dated based on neighboring bins.
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4 END-TO-END TRAINING

• For each point in the image, we use focal
loss to learn the class probabilities.

• For each point on an object, we use the
hindsight loss to learn the mixture model.

• The component that is closest to the
ground-truth is updated by penalizing the
negative log likelihood.

• The mixture weights are learned using the
cross entropy loss.

5 ADAPTIVE NON-MAXIMUM SUPPRESSION

• Non-maximum suppression is performed
to remove boxes with an intersection over
union (IoU) greater than a threshold.

• Due to the uncertainty in the predictions,
some amount of overlap is expected.

• For each pair of boxes, we adapt the IoU
threshold based on their predicted standard
deviations. t =

{
σ1+σ2

2w−σ1−σ2
σ1 + σ2 < w

1 otherwise

RESULTS
• Our approach is evaluated and compared against previous methods on two datasets:

– The ATG4D object detection dataset (1.2 million training sweeps)
– The KITTI object detection benchmark (7,481 training sweeps)

• Following the KITTI benchmark, only detections within the front 90◦ field of view of
the sensor and up to 70 meters are considered.

Table 1: BEV Object Detection Performance on ATG4D
Method Input Vehicle AP0.7 Bike AP0.5 Pedestrian AP0.5
LaserNet (Ours) LiDAR 85.34 61.93 80.37
PIXOR LiDAR 80.99 - -
PIXOR++ LiDAR 82.63 - -
ContFuse LiDAR 83.13 57.27 73.51
ContFuse LiDAR+RGB 85.17 61.13 76.84

Table 2: Ablation Study on ATG4D
Predicted Distribution Image Spacing Mean Shift IoU Threshold NMS Type Vehicle AP0.7

Mean-only Laser Yes 0.1 Hard 77.05
Unimodal Uniform Yes 0.1 Hard 79.14
Unimodal Laser No 0.1 Hard 80.22
Unimodal Laser Yes 0.1 Hard 80.92

Multimodal Laser Yes 0.1 Hard 81.80
Multimodal Laser Yes N/A Soft 84.43
Multimodal Laser Yes Adaptive Hard 83.68
Multimodal Laser Yes Adaptive Soft 85.34

Table 3: BEV Object Detection Performance and Runtime on KITTI
Method Input Vehicle AP0.7 Runtime

Easy Moderate Hard Forward Pass (ms) Total (ms)
LaserNet (Ours) LiDAR 78.25 73.77 66.47 12 30
PIXOR LiDAR 81.70 77.05 72.95 35 62
PIXOR++ LiDAR 89.38 83.70 77.97 35 62
VoxelNet LiDAR 89.35 79.26 77.39 190 225
MV3D LiDAR+RGB 86.02 76.90 68.49 - 360
AVOD LiDAR+RGB 88.53 83.79 77.90 80 100
F-PointNet LiDAR+RGB 88.70 84.00 75.33 - 170
ContFuse LiDAR+RGB 88.81 85.83 77.33 60 -

• On the small dataset, our approach under-performs compared to state-of-the-art meth-
ods, but on a significantly larger dataset, our method out-performs the previous work.
• Runtime performance is equally important for the purpose of autonomous driving, and

our method is twice as fast as the fastest state-of-the-art method.
• Predicting a probability distribution over bounding boxes is a key aspect of our ap-

proach as shown in the ablation study.
• We suspect the KITTI training set does not contain enough examples to accurately

learn the distribution (as shown below), explaining the difference in performance.

(a) Calibration on KITTI (b) Calibration on ATG4D

Figure 1: Plots showing the calibration of the predicted distribution over bounding boxes
on the train and validation sets. A perfectly calibrated distribution corresponds to a line
with unit slope (dashed line in the plots).


