
REAL-TIME 3D FACE MODELING WITH A COMMODITY DEPTH CAMERA 

 

Gregory P. Meyer and Minh N. Do 

 

University of Illinois at Urbana-Champaign 

{gmeyer3, minhdo}@illinois.edu 
 

ABSTRACT 

 

We propose a system that enables a person to quickly and 

easily generate a high-quality 3D model of their face using a 

low-cost depth camera such as the Kinect. The Kinect 

sensor provides depth images at video-rate, however, the 

depth images are often noisy and contain holes. Our system 

builds high-quality 3D face models by registering and 

integrating multiple depth images of a user's head. This 

method allows a user to generate a model of their face by 

simply moving their head in front of a fixed depth camera. 

Our method is built upon the KinectFusion system with 

modifications to enable segmented depth images to be 

robustly registered and integrated. Furthermore, we present 

a fast technique to segment a user's head from a depth 

image. Our system is able to run at a real-time rate on 

commodity hardware. 

  

Index Terms— 3D Face Modeling, Kinect, Real-time 

 

1. INTRODUCTION 

 

The ability to generate a 3D model of a person's face has 

several uses in computer graphics and computer vision. For 

computer graphics, 3D face models can be used to construct 

a personalized avatar for multimedia applications. For 

computer vision, 3D face models can be used for facial 

recognition and face analysis. 

There are two primary approaches to construct 3D 

models of human faces. One approach uses active sensors to 

capture the 3D geometry of a face, and the other uses 

passive sensors to reconstruct the 3D face model from one 

or more 2D images [4]. In the past, using an active sensor, 

such as a range scanner or depth camera, was restrictive due 

to their cost. With the success of Microsoft's Kinect, 

commodity depth cameras are now widely available. 

The Kinect sensor provides depth images at real-time 

rates, however, the data is often noisy and contains holes. 

To improve quality, a sequence of depth images can be 

registered and integrated into a 3D model. The KinectFusion  

system [5] demonstrated that a high-quality 3D model of a 

room-size environment could be generated in real-time 
___________________________ 

This work was supported in part by the Illinois-Intel 

Parallelism Center and by the National Science Foundation under 

Grant CCF-1218682. 

using a Kinect camera. 

In this paper, we present an extension of the 

KinectFusion system that enables anyone to quickly and 

easily generate a high-quality 3D model of their face by 

simply moving their head in front of a fixed depth camera. 

Our system makes several technical improvements to the 

KinectFusion system to facilitate the construction of 3D face 

models. An overview of our system is shown in Figure 1. 

In the following sections, we review work related to our 

proposed method, describe our system in detail, and present 

experimental results. 

 

2. RELATED WORK 

 

3D face modeling has been an active research topic for the 

past three decades. A large variety of methods utilizing both 

active and passive sensors have been developed. For an 

extensive survey of these systems refer to [4]. Recently, 

there has been a few proposed methods that use a Kinect 

camera to generate 3D face models [3, 9]. 

[9] uses the Kinect camera's color sensor to detect facial 

features such as the eyes and nose. They use these features 

to align a generic face model to a depth image. Afterwards, 

they deform the generic model to fit the depth image. 

M. Hernandez et al. [3] proposed a system that 

generates a 3D face model from a sequence of depth images. 

They capture depth images from the Kinect camera, and 

they use a face detection algorithm to segment the user's 

head from the depth image. The segmented depth images are 

registered and integrated into a 3D model. Their method 

accumulates the registered depth images in an unwrapped 

 

Figure 1. An overview of our system. 



cylindrical 2D image, which allows them to use 2D spatial 

filters to remove noise. 

Our method does not use a generic model to generate a 

3D face model. Also, our method does not perform spatial 

filtering on the model to reduce noise. 

Our system is based on the KinectFusion system [5]. 

The KinectFusion system was designed to generate a 3D 

model of room-size environment. To construct a model, a 

person moves a Kinect camera around a room, and the 

system registers and integrates the captured depth images 

into a 3D model. The purpose of our system is to enable a 

person to generate a 3D model of their face by fixing a 

depth camera and moving their head. For this approach to 

work, significant improvements to the KinectFusion system 

are necessary. We developed a fast technique to segment a 

person's head from a depth image. Unfortunately, the 

reduced set of depth measurements in the segmented depth 

images can affect our ability to accurately construct a 3D 

model. To allow robust registration of segmented depth 

images, we perform additional filtering to eliminate 

unreliable depth measurements, and pre-align the images 

based on their 3D center of mass before registration. In 

addition, our system is tuned to model faces instead of 

room-size environments. 

 

3. METHOD 

 

3.1. Data acquisition 

 

The Kinect sensor is capable of capturing depth information 

of a scene at video-rate. At time   our system acquires a raw 

depth image    from the Kinect.    consists of a set of 

pixels       with each pixel containing a depth 

measurement         in millimeters. 

 

3.2. Segmentation 

 

The depth image    contains depth  measurements for the 

entire scene within view of the sensor. For our system, we 

only want to consider depth pixels on the user's face. We 

developed a method to quickly segment the user's head from 

the depth image. To simplify the task, we make assumptions 

on how the user is positioned in front of a fixed camera. We 

assume the user is sitting upright near the camera with their 

head and shoulders clearly visible.  

Our method segments the depth image into foreground 

and background regions, where the foreground includes the 

entirety of the user, and the background contains the rest of 

the environment. Connected component analysis is used to 

determine the foreground region. Two neighboring depth 

pixels are considered connected when their difference is 

below a threshold. We assume the foreground region is the 

largest component within a short distance from the camera. 

To determine the location of the user's head within the 

foreground region, our method looks for a horizontal scan 

line that separates the foreground into head and torso 

regions. In order to accomplish this task, we generate a row 

histogram  , 

 

              

 

 (1) 

 

where    is the foreground mask, and each bin      
contains the width of the foreground region in row  . The 

bins in the row histogram can be split into sets   and  ,  

 

                        (2) 

                        (3) 

 

where   is the horizontal scan line that separates the bins. 

We want to determine  , such that, all rows that contain the 

head region are in set  , and all rows that contain the torso 

region are in set  . Typically, the width of a user's head is 

significantly different than the width of their torso, so we 

can find   by maximizing the variance between the 

histogram bins in   and  , 

 

         
 

           
  (4) 

 

where, 

 

    
   

     
    

   

     
 (5) 

    
      

   
    

      

   
 (6) 

 

and     is the size of the set. A segmented depth image   
 , 

 

 
  

      

  
                            

          
  

(7) 

 

is generated by removing all depth  measurements not in the 

head region. 

 

3.3. Filtering 

 

The depth measurements captured by the Kinect sensor are 

often noisy. This is especially true in regions that contain 

hair. The noise can affect our ability to correctly register 

depth images. To improve registration, we eliminate depth  

measurements with a high local variance        , 

 

 
  

       

    
                      

 

          
  

(8) 

 

where     
  is the threshold on the local variance of a pixel. 

In addition, we use a bilateral filter to reduce noise while 

preserving depth discontinuity [8]. 



3.4. Back-projection 

 

The Kinect sensor provides depth measurements in the form 

of a depth image. To register depth images together, we first 

need to create a point cloud by back-projecting the depth 

pixels to 3D vertices and estimate each vertices' surface 

normal. We can generate a vertex map    by back-projecting 

each depth pixel into the camera's reference frame [5], 

 

           
           

 
 
 
  (9) 

 

where   is the Kinect sensor's intrinsic calibration matrix. 

Each vertices' surface normal can be estimated using 

the cross product of neighboring vertices [5], 

 

 
                           

                     
(10) 

 

3.5. Registration 

 

To create a 3D model we need to align several vertex maps. 

For each vertex map    we must determine the rigid body 

transformation     , 

 

       
        

  
  (11) 

 

that transforms the vertices and surface normals into a 

global coordinate space. 

Iterative closest point (ICP) is a common method of 

computing a rigid body transformation that aligns 3D point 

clouds. [7] suggests a high speed variant of ICP that uses 

projective data association and the point-to-place error 

metric. Projective data association allows point 

correspondences to be computed directly by finding 

corresponding points along camera rays [1]. Also, the point-

to-plane error metric has been found to improve 

convergence rates over other error metrics [7]. 

To implement ICP, we require an initial guess for the 

global transformation     
 . Since each vertex map    only 

has points on the user's head, we can estimate the between 

frame transformation       
  as the translation that aligns the 

3D centers of    and     , 

 

       
   

          
  

  (12) 

 

where    and      are the centroids of    and     , 

respectively. Using the between frame transformation       
  

and the previous frame's global transformation, we can 

approximate the current frame's global transformation     
 , 

 

     
              

 . (13) 

 

We iteratively refine our guess for the global 

transformation     
 , where each iteration   we find the set of 

corresponding points using projective data association, and 

solve for an incremental transformation by minimizing the 

point-to-plane error metric. This process is continued for a 

set number of iterations or until the error stops rapidly 

decreasing. After the last iteration      is set to     
 . 

 

3.6. Integration 

 

Once the rigid body transformation      is known, the depth 

image can be integrated into the 3D model. A volumetric 

representation is used to model the user's face. For our 

system the volume is roughly the size of a person's head. 

The volume contains      voxels, where each voxel   

contains a weight      and a signed distance      to the 

nearest surface along camera rays [2]. The signed distances 

are only accurate near a surface, so they are truncated to 

prevent surfaces from interfering with each other [2]. We 

assume the actual surface is within    of a surface 

measurement, therefore, non-truncated signed distances only 

need to exist in this region of uncertainty near a surface [5]. 

Each segmented depth image   
   is incrementally fused into 

the volumetric model, 

 

      
                   

          
 (14) 

                           (15) 

 

where       and       are the incremental weight and 

signed distance, respectively. To determine       and 

     , voxel   is projected into the depth image, and the 

signed distance is calculated by subtracting the depth of the 

voxel from the depth measurement, 

 

      
        

     
    

 

              
 (16) 

 

and truncating the resulting value, 

 

                     
    

 
  (17) 

 

[5]. The weight is selected so that only voxels that lie in 

front of valid surface measurements are updated, 

 

        
             

         

          
  (18) 

 

3.7. Rendering 

 

Rendering the volume displays the current state of the 

model to the user, so they can reposition their head to 



improve different parts of the model. Also, we can use the 

current state of the volume to refine the vertex map    and 

normal map   . Updating the vertices and surface normals 

based on the model improves the robustness of the 

registration step [5]. 

Ray casting is used to render the model. For each pixel, 

a corresponding ray is stepped through the volume. At each 

step  , a ray determines its current position in the volume, 

 

                 
   

 
 
 
   (19) 

 

where    is the total distance traveled by the ray during 

steps      , and       is the pixel location from which the 

ray was casted. The signed distance       is determined by 

trilinear interpolation of the signed distances stored in 

neighboring voxels [6]. A surface is found when the ray 

steps from a positive signed distance   
  to a negative signed 

distance     
 . The location of the surface can be determined 

by interpolating    and      [5]. 

 

4. RESULTS 

 

We compared a 3D face model generated by our proposed 

system with a model generated by [3]. Figure 2 shows the 

models created by the two systems without any post-

processing applied. Our method is able to capture more 

facial details than [3]. 

Our system runs in real-time on commodity hardware. 

Using an Intel Core i7 CPU and a NVIDIA Geforce GTX 

570 GPU, our system is capable of processing more than 25 

frames per second. The execution time of our method is 

listed in Table 1. Our method was implemented using C++ 

and CUDA, and the source code is available on our website. 

 

5. CONCLUSION 

 

We presented a system that allows a user to effortlessly 

generate a high-quality 3D face model using a low-cost 

depth camera. The user simply moves their head in front of 

a commodity depth camera placed on their desk, and a 3D 

model of their face is constructed in real-time. 

We developed a simple technique to extract a person's 

face from a depth image. In addition, we made several 

improvements to the KinectFusion system to enable 

segmented depth images to be robustly registered and 

integrated. 

We were able to demonstrate a visual improvement 

over the state-of-the-art [3]. However, further comparisons 

are necessary to prove the strength of our method. 

 

6. REFERENCES 

 

[1] G. Blais and M. D. Levine, "Registering multiview 

range data to create 3D computer objects," IEEE Trans. 

Pattern Anal. Mach. Intell., vol. 17, no. 8, pp. 820-824, 

Aug. 1995. 

[2] B. Curless and M. Levoy, "A volumetric method for 

building complex models from range images," in 

Proceedings of the Conference on Computer Graphics 

and Interactive Techniques, 1996, pp. 303-312. 

[3] M. Hernandez et al., "Laser scan quality 3-D face 

modeling using a low-cost depth camera," in European 

Signal Processing Conference, 2012, pp. 1995-1999. 

[4] M. J. Leo and D. Manimegalai, "3D modeling of human 

faces - A survey," in Proceedings of the IEEE 

International Conference on Trends in Information 

Sciences and Computing, 2011, pp. 40-45. 

[5] R. Newcombe et al., "KinectFusion: Real-time dense 

surface mapping and tracking," in IEEE International 

Symposium on Mixed and Augmented Reality, 2011, pp. 

127-136. 

[6] S. Parker et al., "Interactive ray tracing for isosurface 

rendering," in Proceedings of Visualization, 1998, pp. 

233-238. 

[7] S. Rusinkiewicz and M. Levoy, "Efficient variants of 

the ICP algorithm," in Proceedings of the IEEE 

International Conference on 3-D Digital Imaging and 

Modeling, 2001, pp. 145-152. 

[8] C. Tomasi and R. Manduchi, "Bilateral filtering for 

gray and color images," in Proceedings of the IEEE 

International Conference on Computer Vision, 1998, 

pp. 839-846. 

[9] M. Zollhöfer et al., "Automatic reconstruction of 

personalized avatars from 3D face scans," Computer 

Animation and Virtual Worlds, vol. 22, no. 2, pp. 195-

202, Apr. 2011. 

   

(a) Raw Image (b) Our Method (c) Hernandez 
 

Figure 2. Comparison between a raw depth image, a face 

model generated with our proposed method, and a face 

model constructed with [3]. 

Table 1. Runtime of our system's components. 

Component Runtime (ms) 

Data acquisition 0.7 

Segmentation 4.2 

Filtering 1.8 

Back-projection 0.8 

Registration 13.1 

Integration 11.9 

Rendering 3.7 

Total 36.2 
 


