Uber ATG

INTRODUCTION

- 3D object detection and semantic scene understanding are two fundamental capabilities for autonomous driving.
- We present a method for fusing 2D image data and 3D LiDAR data, and we leverage this approach to improve LaserNet, a LiDAR based 3D object detector.
- Additionally, we extend the model to perform 3D semantic segmentation.
- On a large dataset, our approach achieves state-of-the-art performance on both object detection and semantic segmentation.
- Our extensions are lightweight, adding only 8 ms to the runtime of LaserNet.

OVERVIEW

- Our method fuses 2D camera images and 3D LiDAR measurements.
- Both sensor modalities are represented as images, where the 3D data is represented using the native range view of the LiDAR.
- Our approach associates LiDAR points with camera pixels by projecting the 3D points Our approach is evaluated and compared to state-of-the-art methods in both 3D object onto the 2D image, and this mapping is used to warp information from the camera image to the LiDAR image.
- Instead of warping RGB values as shown, we fuse features extracted by a CNN.
- The LiDAR and camera features are concatenated and passed to LaserNet.
- The entire model is trained end-to-end to perform 3D object detection and semantic segmentation without the need for additional image labels.

LASERNET

- LaserNet: An Efficient Probabilistic 3D Object Detector for Autonomous Driving will be present at the main conference during the Thursday afternoon poster session.
- LaserNet was also developed by members of the Uber Advanced Technologies Group.
- For more information on LaserNet, please visit our poster, **#209**.

SENSOR FUSION FOR JOINT 3D OBJECT DETECTION AND SEMANTIC SEGMENTATION

Gregory P. Meyer

gmeyer@uber.com

Jake Charland

jakec@uber.com

Darshan Hegde

darshan.hegde@uber.com

Uber Advanced Technologies Group

METHOD

SENSOR FUSION

- The 2D image and the 3D points are related through projective geometry.
- To fuse the LiDAR and RGB data, each LiDAR point *p* is projected onto the RGB image:

$$\alpha [u, v, 1]^T = \boldsymbol{K} (\boldsymbol{R} \boldsymbol{p} + \boldsymbol{t})$$

• This provides a mapping from the LiDAR image to the RGB image, which is used to copy features from the RGB image into the LiDAR image.

2 NETWORK ARCHITECTURE

- Fusing raw RGB data would result in a significant amount of information loss. Instead, we fuse features extracted by a CNN from the RGB image.
- The image network contains three ResNet blocks, where each block downsamples the feature map by half and performs a set of 2D convolutions.
- The image features are warped into the LiDAR image and concatenated with the LiDAR features then passed to LaserNet.
- The image network is trained by back-propagating the loss through the warped image features.

3 PREDICTIONS

- The network is trained to predict a set of class probabilities for each point in the image.
- Given a point is on an object, the network estimates the bounding box by predicting a center, orientation, and dimensions relative to the point.

DETECTION RESULTS

- detection and semantic segmentation on the large-scale ATG4D dataset.
- The dataset contains 5,000 sequences for training and 500 sequences for validation.
- The detection and segmentation performance of our method and the existing work is evaluated within the front 90° field of view and up to 70 meters away.

Table 1. DEV Object Detection I chomance						
Method	Input	Vehicle $AP_{0.7}$	Bike $AP_{0.5}$	Pedestrian $AP_{0.5}$		
PIXOR	Lidar	80.99	-	-		
PIXOR++	Lidar	82.63	-	-		
ContFuse	Lidar	83.13	57.27	73.51		
LaserNet	Lidar	85.34	61.93	80.37		
ContFuse	LiDAR+RGB	85.17	61.13	76.84		
LaserNet++ (Ours)	LiDAR+RGB	86.23	65.68	83.42		

- On the ATG4D dataset, our approach achieves state-of-the-art performance.
- Adding the supplemental 2D data improves performance on smaller objects (pedestrian and bike) where the LiDAR receives fewer measurements.

Ankit Laddha

Carlos Vallespi-Gonzalez

aladdha@uber.com

cvallespi@uber.com

Table 1. REV Object Detection Performance

).5

SEGMENTATION RESULTS

Method 2D U-Net LaserNet++ (Ours

Mathad	Class IoU					
Method	Background	Road	Vehicle	Pedestrian	Bicycle	Motorcycle
2D U-Net	92.03	97.92	93.76	74.47	61.25	38.90
LaserNet++ (Ours)	93.59	98.23	97.67	86.19	80.98	63.07

- To perform semantic segmentation, we classify each point in the LiDAR image with its most likely class according to the predicted class probabilities.
- On this dataset, our approach considerably outperforms the existing method across all metrics.
- LaserNet++ performs particularly well on smaller classes (pedestrian, bicycle, and motorcycle).

Table 2: 3D Semantic Segmentation Performance

	Input	mAcc	mIoU
	Lidar	81.95	76.39
s)	LiDAR+RGB	91.77	86.62

Table 3: Per-Class Semantic Segmentation Performance

	Background -	97.42	2.26	0.16	0.15	0.02	0.00	
True Labels	Road -	1.03	98.91	0.06	0.00	0.00	0.00	
	Vehicle -	0.83	0.49	98.67	0.02	0.00	0.00	
	Pedestrian -	5.96	0.22	0.47	92.77	0.57	0.01	
	Bicycle -	6.11	0.36	0.39	1.92	89.98	1.24	
	Motorcycle -	5.37			4.26	16.35	72.86	
		Backg	Road	Vehicle	Pedes	Bicycle	Motor	CYCle
Predicted Labels					-			